Evolution of the SH3 Domain Specificity Landscape in Yeasts
نویسندگان
چکیده
To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolution, we compared the specificity landscape of these domains among four yeast species, Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces pombe, encompassing 400 million years of evolution. We first aligned and catalogued the families of SH3-containing proteins in these four species to determine the relationships between homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT readouts were hierarchically clustered and we observed that the organization of the SH3 specificity landscape in three distinct profile classes remains conserved across these four yeast species. We also produced a specificity profile for each SH3 domain from manually aligned top SPOT hits and compared the within-family binding motif consensus. This analysis revealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog, which cannot be explained by overall SH3 sequence or interface residue divergence, and we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we show that position-weighted matrices (PWM) compiled from SPOT assays can be used for binding motif screening in potential binding partners and present cases where motifs are either conserved or lost among homologous SH3 interacting proteins. Finally, by comparing pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all analyzed families the SH3 specificity profile was remarkably conserved over a large evolutionary distance. Thus, a high sequence identity within an SH3 domain family predicts conserved binding specificity, whereas divergence in sequence identity often coincided with a change in binding specificity within this family. As such, our results are important for future studies aimed at unraveling complex specificity networks of peptide recognition domains in higher eukaryotes, including mammals.
منابع مشابه
In vitro evolution of recognition specificity mediated by SH3 domains reveals target recognition rules.
We have designed a repertoire of 10(7) different SH3 domains by grafting the residues that are represented in the binding surfaces of natural SH3 domains onto the scaffold of the human Abl-SH3 domain. This phage-displayed library was screened by affinity selection for SH3 domains that bind to the synthetic peptides, APTYPPPLPP and LSSRPLPTLPSP, which are peptide ligands for the human Abl or Src...
متن کاملDirected Evolution of a Highly Specific FN3 Monobody to the SH3 Domain of Human Lyn Tyrosine Kinase
Affinity reagents of high affinity and specificity are very useful for studying the subcellular locations and quantities of individual proteins. To generate high-quality affinity reagents for human Lyn tyrosine kinase, a phage display library of fibronectin type III (FN3) monobodies was affinity selected with a recombinant form of the Lyn SH3 domain. While a highly specific monobody, TA8, was i...
متن کاملEvolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity.
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships betwee...
متن کاملThe SH3 domain--a family of versatile peptide- and protein-recognition module.
Src homology 3 (SH3) domains were initially characterized as a prevalent protein module that recognizes proline-rich sequences, in particular those containing a PxxP motif. Recent studies have shown that the specificity and cellular function of SH3 domains are far more diverse than previously appreciated. Despite lacking distinguishing features, the ligand-binding surface of an SH3 domain can b...
متن کاملCharacterization of domain-peptide interaction interface: a generic structure-based model to decipher the binding specificity of SH3 domains.
Extensive efforts have been devoted to determining the binding specificity of Src homology 3 (SH3) domains usually in a case-by-case manner. A generic structure-based model is necessary to decipher the protein recognition code of the entire domain family. In this study, we have developed a general framework that combines molecular modeling and a machine learning algorithm to capture the energet...
متن کامل